Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-Chloro-3,4-dimethoxybenzaldehyde (4-nitrophenyl)hydrazone

Shang Shan, ${ }^{\text {a }}$ Xiao-Juan Wang, ${ }^{\text {a }}$ Wei-Xiao Hu ${ }^{\text {a }}$ and Duan-Jun Xu ${ }^{\text {b }}$
${ }^{\text {a College of Chemical and Materials Engineering, }}$ Zhejiang University of Technology, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail:
shanshang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.028$
$w R$ factor $=0.078$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Crystals of the title compound, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{4}$, were obtained from a condensation reaction of 2-chloro-3,4-dimethoxybenzaldehyde and 4-dinitrophenylhydrazine. Within the nitrophenyl moiety, the distances of 1.401 (2) and 1.399 (2) \AA for the two $\mathrm{C}-\mathrm{C}$ bonds adjacent to the imino group are appreciably longer than the average distance of 1.377 (2) \AA for the other aromatic $\mathrm{C}-\mathrm{C}$ bonds in the same benzene ring. The crystal packing involves $\pi-\pi$ stacking effects.

Comment

Phenylhydrazones have recently attracted our attention as derivatives show potential applications in biochemistry (Okabe et al., 1993). A series of dinitrophenylhydrazone compounds have been prepared in our laboratory and their crystal structures showed that, within the dinitrophenyl moiety, the $\mathrm{C}-\mathrm{C}$ bonds adjacent to the imino group were appreciably longer than the other $\mathrm{C}-\mathrm{C}$ bonds in the same benzene ring. The crystal structure of the title nitrophenylhydrazone, (I) (Fig. 1), is presented here to compare with the corresponding dinitro compound (Shan et al., 2003).

(I)

The C1-benzene plane is tilted with respect to the C8benzene plane by a dihedral angle of $18.17(11)^{\circ}$. The nitro group is coplanar with the C1-benzene plane, the dihedral angle being $1.4(3)^{\circ}$. The O4-methoxy group is coplanar with the C8-benzene plane, the maximum atomic deviation from the mean plane being 0.048 (3) \AA for atom C15. Conversely, atoms O3 and C14 of the O3-methoxy group are located on opposite sides of the C8-benzene plane, with displacements of 0.112 (2) and 1.106 (3) Å, respectively.

The $\mathrm{C} 1-\mathrm{C} 2$ bond of 1.401 (2) \AA and the $\mathrm{C} 1-\mathrm{C} 6$ bond of 1.399 (2) Å, both adjacent to the imino group, are appreciably longer than the other aromatic $\mathrm{C}-\mathrm{C}$ bonds in the same benzene ring, ranging from 1.371 (2) to 1.385 (2) \AA (see Table 1). This agrees with the situation found in chlorodimethoxybenzaldehyde dinitrophenylhydrazone (Shan et al., 2003).

The overlapped arrangement of nearly parallel C1-benzene and C 8 -benzene rings [symmetry code: (i) $x, 1-y, \frac{1}{2}+z$] is illustrated in Fig. 2. The dihedral angle and centroid-centroid

Received 5 July 2004 Accepted 7 July 2004 Online 17 July 2004

Figure 1
The molecular structure of (I), shown with 30% probability displacement ellipsoids.

Figure 2
The $\pi-\pi$ stacking in (I) between neighboring benzene rings [symmetry code: (i) $\left.x, 1-y, \frac{1}{2}+z\right]$.
distance between the C 1 -benzene and C 8 -benzene rings are $1.39(13)^{\circ}$ and 3.6981 (10) \AA, respectively, suggesting the existence of $\pi-\pi$ stacking between benzene rings in the crystal structure.

The imino atom H 1 forms a hydrogen bond with the methoxy $\mathrm{O}^{\text {ii }}$ atom (Table 2), giving a hydrogen-bonded supramolecular structure, as shown in Fig. 3.

Experimental

4-Nitrophenylhydrazine ($0.31 \mathrm{~g}, 2 \mathrm{mmol}$) was dissolved in ethanol $(10 \mathrm{ml})$, then acetic acid $(0.2 \mathrm{ml})$ was added slowly to the ethanol solution with stirring. The solution was heated at 333 K for several minutes until the solution cleared. An ethanol solution (10 ml) containing 2-chloro-3,4-dimethoxybenzaldehyde ($0.4 \mathrm{~g}, 2 \mathrm{mmol}$) was added dropwise to the above solution with continuous stirring, and the mixture was kept at about 333 K for half a hour. After cooling to room temperature, orange microcrystals appeared. The microcrystals were separated from the solution and washed with cold water three times. Recrystallization was performed twice with chloroform, resulting in well shaped single crystals.

Figure 3
A molecular packing diagram for (I). Dashed lines indicate the hydrogen bonding [symmetry codes: (ii) $x,-y, \frac{1}{2}+z$; (iii) $x,-y, z-\frac{1}{2}$].

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{4}$
$M_{r}=335.74$
Monoclinic, Cc
$a=16.4537$ (10) \AA
$b=8.1471$ (11) \AA
$c=14.5814(12) \AA$
$\beta=127.535(12)^{\circ}$
$V=1550.0(4) \AA^{3}$
$Z=4$

$$
D_{x}=1.439 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 5900
reflections
$\theta=2.5-25.0^{\circ}$
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, orange
$0.50 \times 0.46 \times 0.38 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: none
6761 measured reflections
3216 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.078$
$S=1.03$
3216 reflections
209 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0571 P)^{2}\right.$ $+0.0873 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
Table 1
Selected bond distances (\AA).

$\mathrm{Cl}-\mathrm{C} 9$	$1.7352(14)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.278(2)$
$\mathrm{O} 3-\mathrm{C} 10$	$1.3694(17)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.401(2)$
$\mathrm{O} 3-\mathrm{C} 14$	$1.432(2)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.399(2)$
$\mathrm{O} 4-\mathrm{C} 11$	$1.3616(18)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.374(2)$
$\mathrm{O} 4-\mathrm{C} 15$	$1.432(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.385(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.3619(17)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.379(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3725(18)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.371(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H}^{\cdots} \cdots \mathrm{O}^{3 i}$	0.86	2.36	$2.8975(19)$	121

Symmetry code: (ii) $x,-y, \frac{1}{2}+z$.

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) or $0.96 \AA$ (methyl) and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and included in the final cycles of refinement in the riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ or $1.5 U_{\text {eq }}$ of the carrier atoms.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The work was supported by the Zhejiang Provincial Natural Science Foundation of China (M203027) and the Canal Cup Foundation of Zhejiang University of Technology.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Okabe, N., Nakamura, T. \& Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Shan, S., Chen, W.-R., Hu, W.-X. \& Xu, D.-J. (2003). Acta Cryst. E59, o1723o1725.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

